
Upcoming	Biowulf Seminars

• November	30,	1	- 3	pm																																																																								
Python	in	HPC
Overview	of	python	tools	used	in	high	performance	computing,	and	
how	to	improve	the	performance	of	your	python	jobs	on	Biowulf
• Jan	16,	1	- 3	pm	
Relion tips	and	tricks,	and	Parallel	jobs	and	benchmarking
Mechanics	and	best	practices	for	submiting RELION	jobs	to	the	batch	
system	from	both	the	command	line	and	via	the	RELION	GUI,	as	well	
as	methods	for	monitoring	and	evaluating	the	results.	Scaling	of	
parallel	jobs,	how	to	benchmark	to	make	effective	use	of	your	
allocated	resources

Bldg 50,	Rm	1227

Making	Effective	Use	of	the	
Biowulf Batch	System

NIH	HPC	Systems

Steven	Fellini
staff@hpc.nih.gov
NIH	HPC	Staff,	CIT

Oct	30,	2017

Effective	Use	==	Effective	Resource	Allocation

• Specifying	resources
• Estimating	required	resources
• Allocating	resources	with	sbatch and	swarm

• Monitoring	resource	allocation
• Scheduling	and	resource	allocation
• Post-mortem	analysis

CPUs

CPU

Hardware	Terminology	Review

Hyper-threading

Processor

Node

Estimating	Resources
• CPU
• Check	documentation	(https://hpc.nih.gov/apps/)
• Objective	-- match	CPU:Threads 1:1		
(there	are	exceptions,	e.g.,	MD	jobs)

• Memory
• Run	a	job	or	swarm	with	a	large	memory	allocation
• Check	actual	memory	usage
• Add	10%	to	actual	memory	usage

• Time
• Run	a	job	or	swarm	with	a	large	time	allocation
• Check	actual	wall	time
• Add	10%	to	actual	wall	time

Allocating	Resources	with	sbatch and	swarm
• All	jobs
• --mem	(sbatch)	or	-g	(swarm)
• --time	(sbatch and	swarm)
• -b	to	bundle	command	lines	(swarm)

• Single-threaded	jobs
• “-p	2”	to	load	cores	with	2	threads	(swarm)

• Multi-node	jobs	
• “Parallel	Jobs	and	Benchmarking”	Jan	16

• Multi-threaded	jobs
• --cpus-per-task	(sbatch)	or	-t	(swarm)
• Use	$SLURM_CPUS_PER_TASK	in	batch	script
• OMP_NUM_THREADS

Monitoring	Resource	Allocation

• CPU
• jobload while	the	job	is	running
• Dashboard	during	or	after	the	job
• (No	easy	way	to	monitor	GPU	utilization	at	the	moment)

• Walltime
• jobhist,	Dashboard	or	sacct during	or	after	the	job	has	completed

• Memory
• jobload while	the	job	is	running
• jobhist,	Dashboard	or	sacct during	or	after	the	job	has	completed

jobload
% jobload -u someuser
JOBID TIME NODES CPUS THREADS LOAD MEMORY

Elapsed / Wall Alloc Active Used / Alloc
51863534 6-22:08:01 / 10-00:00:00 cn3095 4 4 100% 1.0 / 8.0 GB
51863535 6-22:08:01 / 10-00:00:00 cn3256 4 5 125% 0.9 / 8.0 GB
51863536 6-22:08:01 / 10-00:00:00 cn3348 4 1 25% 1.0 / 8.0 GB
51863537 6-22:08:01 / 10-00:00:00 cn3401 4 3 75% 0.9 / 8.0 GB
51881591 6-19:42:16 / 10-00:00:00 cn3097 4 1 25% 1.0 / 8.0 GB

% jobload -j 51874438_233
JOBID TIME NODES CPUS THREADS LOAD MEMORY

Elapsed/Wall Alloc Active Used/Alloc
51874438_233 6-20:10:13/10-00:00:00 cn3105 2 1 50% 0.5/ 1.5 GB

jobhist

jobhist 52102264_67
Jobid Partition State Nodes CPUs Walltime Runtime MemReq MemUsed Nodelist
52102264_67 norm COMPLETED 1 2 02:00:00 00:05:29 4.0GB/node 0.8GB cn3185

allocated

used

sacct

% sacct --format=Jobname,AllocCPUS,AllocNodes,ReqMem,MaxRSS,Elapsed -j 52102332
JobName AllocCPUS AllocNodes ReqMem MaxRSS Elapsed
---------- ---------- ---------- ---------- ---------- ----------
tbss_2_reg 2 1 4Gn 00:05:29
batch 2 1 4Gn 815152K 00:05:29

Using	Your	Dashboard	to	Monitor	Jobs
https://hpc.nih.gov

https://hpc.nih.gov/dashboard/

Scheduling	and	Resource	Allocation

• Scheduling	is	determined	by	job	priority
• Priority	is	determined	by	Fairshare value	of	user
• Fairshare is	determined	by	recent	cpu and	memory	allocations of	
running	jobs

• Unnecessarily	long	time	allocation	will	prevent	jobs	from	being	
backfilled

• ‘freen’	shows	free	CPUs	but	not	free	memory	or	disk
• Other	jobs	have	higher	priority	(sprio)
• Nodes	are	reserved	for	higher-priority	jobs

Why	are	my	jobs	pending?

Consequences	of…

Specifying	more	resources	than	
needed

Specifying	fewer	resources	than	
needed

CPU Wasted	CPU	resources,	possibly	
unnecessary	scheduling	delays

Job	runs	a	little/a lot	slower

Memory Wasted	memory	resources,	
possibly	unnecessary	scheduling	
delays

Job	is	“Killed” by	the	kernel

Time Possibly	unnecessary	scheduling	
delays

Job	is	killed	by	the	batch system

Post-mortem	of	jobs	using	user	Dashboard
Or

The	Good,
the	Bad,

and	the	Ugly…

Comment:	job	is	running	with	default	allocations	for	CPU	and	memory
Recommendation:	if	a	subjob of	a	large	swarm,	try	“-p	2”

A+

Another	A+

Recommendation:	reduce	CPU	allocation

A+

Comment:	perfect	CPU	utilization;	underutilized	memory	but	entire	node	is	allocated	
due	to	cpu allocation

Comment:	good	overall	utilization;	possibly	split	into	two	jobs	with	a	dependency,	
and	with	differing	resource	allocations

Comment:	8	CPUs	too	little/too	much,	2	would	do
Recommendation:	could	run	in	half	the	memory

Comment:	good	memory	utilization
Recommendation:	increasing	CPU	allocation	probably	won’t	help

Comment:	CPUs	badly	overloaded
Recommendation:	could	run	in	less	than	half	the	memory

Comment:	CPUs	overloaded	200%
Recommendation:	256	GB	memory	allocated,	MBs	used

Comment:	good	memory	utilization	
Recommendation:	might	run	faster	with	32	CPUs?

Recommendation:	increasing	CPU	count	might	improve?

Recommendation:	allocating	56	CPUs	would	likely	help

staff@hpc.nih.gov

